Lipschitz Continuity of Solutions of Poisson Equations in Metric Measure Spaces
نویسندگان
چکیده
منابع مشابه
Numerical Solutions of Stochastic Differential Equations Driven by Poisson Random Measure with Non-Lipschitz Coefficients
The numerical methods in the current known literature require the stochastic differential equations SDEs driven by Poisson randommeasure satisfying the global Lipschitz condition and the linear growth condition. In this paper, Euler’s method is introduced for SDEs driven by Poisson random measure with non-Lipschitz coefficients which cover more classes of such equations than before. Themain aim...
متن کاملWell posedness of Lagrangian flows and continuity equations in metric measure spaces
We establish, in a rather general setting, an analogue of DiPerna-Lions theory on wellposedness of flows of ODE’s associated to Sobolev vector fields. Key results are a wellposedness result for the continuity equation associated to suitably defined Sobolev vector fields, via a commutator estimate, and an abstract superposition principle in (possibly extended) metric measure spaces, via an embed...
متن کاملSpaces of Lipschitz Functions on Metric Spaces
In this paper the universal properties of spaces of Lipschitz functions, defined over metric spaces, are investigated.
متن کاملOn the Differentiability of Lipschitz Maps from Metric Measure Spaces to Banach Spaces
We consider metric measure spaces satisfing a doubling condition and a Poincaré inequality in the upper gradient sense. We show that the results of [Che99] on differentiability of real valued Lipschitz functions and the resulting bi-Lipschitz nonembedding theorems for finite dimensional vector space targets extend to Banach space targets having what we term a good finite dimensional approximati...
متن کاملDifferentiability of Lipschitz Maps from Metric Measure Spaces to Banach Spaces with the Radon Nikodym Property
In this paper we prove the differentiability of Lipschitz maps X → V , where X is a complete metric measure space satisfying a doubling condition and a Poincaré inequality, and V denotes a Banach space with the Radon Nikodym Property (RNP). The proof depends on a new characterization of the differentiable structure on such metric measure spaces, in terms of directional derivatives in the direct...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Potential Analysis
سال: 2011
ISSN: 0926-2601,1572-929X
DOI: 10.1007/s11118-011-9256-7